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In the present paper, a general integral equation is presented to calculate the forces exerted on
a two-dimensional (2-D) body of arbitrary shape immersed in unsteady, incompressible #ows.
By "nding the general solutions of a set of Laplace equations with particular boundary
conditions, the equation can be simpli"ed to produce a simpli"ed formula for calculating the
forces. The simpli"ed formula consists of three parts, representing contributions from di!erent
physical phenomena: added mass force and/or inertial force in inviscid #ow, the force caused by
the deformation of #uid and viscosity and the force caused by the convection of #uid with
nonzero circulation. It can be applied to any 2-D arbitrary body in viscous or inviscid, steady or
unsteady incompressible #ow. As the formula excludes either temporal derivatives of velocity or
spatial derivatives of vorticity in the #ow "eld, the numerical errors contained in the numerical
solution of velocity and vorticity "elds will not be magni"ed, and therefore the resulting force
calculated is more accurate. Most importantly, the formula presents an alternative method for
obtaining the added mass of a 2-D body of arbitrary shape accelerating in a #uid. For bodies of
simple shape, such as a circle, ellipse and plate, the added masses predicted using the present
method are in agreement with that obtained by conventional methods. For bodies of complex
shape, the present method only requires the calculation of the "rst two coe$cients of the
conformal transformation and cross-sectional area. ( 2002 Academic Press
1. INTRODUCTION

THE ABILITY TO PREDICT the forces exerted on a body immersed in an arbitrary #ow "eld has
been a major objective in #uid dynamic research. The most conventional and direct method
of obtaining the forces is to integrate the elemental contributions of the pressure and the
viscous shear stress over the surface of the body after the #ow "eld has been solved
numerically or analytically.

For 2-D incompressible #ows, the Navier}Stokes (N}S) equations in vorticity/stream-
function formulation is often solved by vortex methods because it has the advantage of only
computing two unknowns (vorticity and stream function). As the numerical results obtained
by vortex methods exclude the pressure "eld, other methods of calculating the pressure
exerted on the body have to be used. There are usually the following three methods for
obtaining the surface pressure.
0889}9746/02/010071#12 $35.00/0 ( 2002 Academic Press



Figure 1. A two-dimensional body immersed in an incompressible #uid.

Figure 2. Variation of the drag coe$cient with time for #ow past an impulsively started circular
cylinder obtained from equation (1).
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One method is to integrate the normal derivative of vorticity over a body:

p(s)!p(0)"P
s

0

k
Lu
Ln

ds , (1)

where p and u are the pressure and vorticity, respectively, L/Ln is the outward normal
gradient on the body (see Figure1) and k the dynamic viscosity.

The second method is to integrate the N}S equations from the body surface to in"nity

p!p
=
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=
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A
LV

Lt
#V '$V#l$ 3 (ue3)B 'dr , (2)

where e
3

is the unit vector perpendicular to #ow plane, $ the gradient operator, V the
velocity vector, and o and l are the density and kinematic viscosity of #uid, respectively.



Figure 3. Variation of the drag coe$cients with time for #ow past an impulsively started circular
cylinder obtained from equation (2) and equation (29): (a) t"0}100; (b) t"89}100.

GENERAL FORMULA FOR CALCULATING FORCES 73
The third method is to solve the Poisson equation of pressure obtained by taking
divergence of the N}S equations

+2p"!o$ ' (V '$V). (3)

Among the three methods represented by equations (1}3), the "rst method has the
obvious advantage of simplicity, if the #ow "eld obtained is analytical or semi-analytical.
This method was used by Collins & Dennis (1973) to calculate the drag and lift forces on
a circular cylinder. However, if the #ow "eld is not obtained analytically or semi-analyti-
cally, there will inevitably be errors in the numerical solutions of velocity and vorticity
"elds. These errors may be ampli"ed and can lead to high-frequency numerical instability
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(see Figure 2) arising from the spatial derivative operation on the vorticity when the drag
and lift forces are obtained from equation (1).

Instead of equation (1), Chang & Chern (1991a, b) utilized equation (2) to calculate the
force acting on a circular cylinder. Our computational experiences (Chew et al. 1995)
indicated that the force obtained from equation (2) is more accurate than that obtained from
equation (1) for #ow past a circular cylinder, but the high-frequency numerical instability
(see Figure 3) contained in the force does not disappear completely. It is found that the
numerical error basically originates from the di!erential operation of the term LV/Lt in
equation (2), which tends to magnify the error contained in the numerical solution of
velocity "eld.

In the method based on equation (3), it is necessary to solve the Poisson equation for each
time step or to solve a corresponding integral equation using boundary element method
(Wang 1986). This would increase the CPU time signi"cantly. Moreover, it is di$cult to
apply pressure boundary conditions on the body directly. Therefore, there is a need to
develop an alternative method for calculating forces exerted on a body immersed in
incompressible #ows numerically.

Quartapelle & Napolitano (1983) proposed a method to evaluate the force acting on
a body. They "rst introduced a harmonic vector function that not only is square summable
in the #ow region, but also satis"es the boundary conditions on the body surface and at far
"eld. This vector function was then used to take a Hilbert scalar product with the N}S
equations. By means of Gauss's theorem, the summation of the pressure force exerted by the
#uid on the body was obtained. After adding the shear stress, the total force formula was
derived. The key to this method is to "nd the vector function satisfying the boundary
conditions as stated earlier. As an example, Quartapelle & Napolitano (1983) gave a har-
monic vector function for the case of #ow around a sphere. Later, Chang & Chern (1991b)
found the vector function for #ow around a circular cylinder.

As it is di$cult to "nd a harmonic vector function for a body of complex geometry,
Quartapelle & Napolitano (1983) did not simplify their formula to account for the e!ect of
ambient #ow acceleration (inertial force) and separate the contributing factors to the force.
For engineering application, especially for ocean engineering, the inertial force is often
a very important component. In this paper, an integral force formula including the inertial
force is "rst presented. A general form of the harmonic vector function is then found for
a 2-D body of arbitrary shape. Using the vector function obtained, a simpli"ed force
formula is derived. This formula describes explicitly and separately the e!ects of various
physical factors contributing to the force. In addition, the formula can also be used for
calculating the added mass and inertia coe$cients of a body in inviscid #ow.

2. BASIC INTEGRAL EQUATION FOR FORCE

Consider an incompressible viscous #ow governed by the time-dependent N}S equations
and the continuity equation

LV

Lt
#V '$V"!

$p

o
!l$ 3 x , (4)

$ 'V"0. (5)

Equations (4) and (5) are supplemented by the initial and boundary conditions:

V D
t/0

"V0 , (6)
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"VB(t), VD

r?=
"V

R
(t). (7)
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Let k be the harmonic vector function satisfying

+ 2k"0 (8)

and taking the Hilbert scalar product of N}S equation by $k, we have

QR
B

(n '$k) pds"oQR
=
Gn 'C$kA

p

o
#

<2

2 B#
LV

Lt
kD#l (n 3 x) '$kHds

!oPR
B
Gl (n 3 x) '$k#(n '$k)

<2

2
#n '

LV

Lt
kHds

#oPX
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where n is the outward-normal unit vector in the integration surface (see Figure 1) and
X denotes the #ow domain. It is obvious that if the harmonic vector function k satis"es

n '$k DR
B
"!n; kD

r?=
"OA

1

rB , (10)

the right-hand side of equation (9) becomes the contribution of the surface pressure to the
force. After taking shear stress on the surface of the body into account, the total force acting
on a body can be expressed as
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(np#kn 3 x) ds
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#
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2
#n '

LV
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k#ln 3 xHds
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(x 3 V) '$kdX . (11)

Equation (11) is a basic integral form of the force exerted by #uid on a body. It can be seen
from this equation that the key to calculating the force is to obtain the harmonic vector
function k satisfying equation (8) and boundary conditions (10).

It may be noted that equation (11) and the second condition in equation (10) are di!erent
from that given by Quartapelle & Napolitano (1983). They considered only the force caused
by body acceleration in a stationary #uid, while equation (11) includes the e!ect of not only
body acceleration but also the acceleration of ambient #ow. In many engineering applica-
tions, the inertial force caused by the acceleration of ambient #ow is a very important factor.

3. A GENERAL FORM OF THE HARMONIC VECTOR FUNCTION

As mentioned earlier, the key to solving equation (11) is to obtain the harmonic vector
function satisfying the boundary conditions. For 2-D #ow, we shall prove that there exists
a general form for the harmonic vector function k satisfying equations (8) and (10) if the
geometry of the body is simply connected.
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It is well known from the complex function theory that for any simply connected 2-D
body in the complex plane (z"x#iy), there exists a conformal transformation

z"mf#
=
+
k/1

m
k

fk
, f"m#ig , (12)

which maps the body into a unit circle in the f plane. We, therefore, state that if the complex
function k is introduced by means of the coe.cients in equation (12)

j"
m

fM
!

=
+
k/1

m
k

fk
, (13)

where fM denotes the conjugation of f, then the vector function k constructed using the real and
imaginary parts of complex function j is the solution of equation (8) under the conditions given
by equation (10).

The proof of the above statement is as follows. Although the complex function de"ned by
equation (13) is not analytical, it is obviously harmonic, i.e., its real and imaginary parts
satisfy equation (8), respectively. It can be seen from equation (12) that
r"DzD"mO ( Df D) D

r?=
, and thus j in equation (13) satis"es the second condition in equation

(10). In order to verify the "rst condition in equation (10) being satis"ed, operator n )$ is
"rst expressed in the corresponding complex form using the method given by Milne-
Thomson (1972), that is

n '$"N
L
Lz

#NM
L
LzN

, (14)

where N"n
x
#in

y
. By applying equation (14), the "rst condition in equation (10) can be

rewritten as the following complex form:
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Lz6 BKR

B
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From equations (12) and (13), j can be expressed as

j"!z#mAf#
1

fM B .

By substituting j into equation (15), one obtains
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Owing to N"dz/i DdzD and dz (L/Lz)"df (L/Lf) on the boundary, we therefore have
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As the body boundary is mapped into the unit circle in the f plane, on this unit circle there
exist the following relationships:

fM"
1

f
, dfM"!

1

f2
df. (18)

Substituting equation (18) into equation (17), one obtains

AN
L
Lz

#NM
L
LzN BAf#

1

fM B"0. (19)

Therefore, equation (16) reduces to equation (15) and the proof ends.

4. SIMPLIFIED FORCE FORMULA

It can be seen from equation (11) that even if k or (j as a complex number) is found, the
formula is still too complicated for general application. In the following, equation (11) will
be simpli"ed after taking into consideration the physical features of #ow "eld. It can be
assumed according to equation (7) that in the region su$ciently far away from the body,
vorticity is zero (u"0) and the #ow is potential; hence,

QR
=

(n 3 x) '$kds"0. (20)

In this irrotational #ow region, there exists the following Bernoulli's integral:
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where c (t) is a function of time and /
d
is disturbing velocity potential caused by the body

and whole vorticity "eld. After the substitution of complex j for vector k, the "rst integral in
equation (11) becomes
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According to the physics of the #ow, although there are positive and negative vorticities in
the #uid, the total vorticity should be zero if the body moves in the #uid translationally, and
thus L/

d
/Lt D

r?=
"O (1/r). Similarly, the velocity at any point in the #ow "eld can be divided

into disturbing velocity V
$

plus V
=
, and Vd Dr?=

"O(1/r2). Therefore, the above equation
reduces to
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Using the Gauss formula, we have
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and hence
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If the surface shear stress [!(n 3 x) ds] is expressed by complex number (udz) and
F"F

x
#iF

y
is used to denote the force acting on the body, then equation (11) becomes
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To simplify equation (24) further, <
=
"u

=x
#iu

=y
is used to replace V

=
, and ∀ is used to

denote the area of the body. We then have
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Similarly, we can obtain
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The second integral in equation (24) can also be simpli"ed further. In fact,
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After substituting equations (25}28) into equation (24), we "nally obtain the formula:
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Equation (29) or (29@) is a simpli"ed force formula expressed in terms of complex numbers.
The real and imaginary parts denote the x- and y-components of the force vector acting on
a body. In comparison to equation (11), equation (29) is much simpler and more convenient
to apply. In the next section, we will discuss the physical meanings of each term in this
formula in detail.

5. DISCUSSION ON THE FORCE FORMULA

It can be observed that equation (29) retains the integral of the term 1
2
(VB 'VB) as its last

term. For a body moving translationally in a viscous #ow, the value of this integral term is
equal to zero, as V

B
is equal to the velocity of the body, which is only a function of time and

does not change along the surface. The purpose of retaining this term here is to show that
equation (29) is still applicable for inviscid #ows (k"0). For instance, when vortices are
embedded in an inviscid #ow to simulate some practical phenomenon, equation (29) can be
used to calculate the force acting on a body by setting k"0. For this case, V

B
is the slip

velocity on the surface of the body, and the integral term containing 1
2
(VB 'VB) is nonzero.

The "rst two terms on the right-hand side of equation (29@) represent the added mass force
caused by the translational acceleration of a body in an inviscid #ow, and the third term
represents the inertial force caused by the acceleration of ambient #ow. The fourth term
(2km :R

B
u df) consists of the contribution from the shear and normal stresses on the surface

resulting from the viscosity of #uid. Hence, this term is due to the deformation of the #uid in
a viscous #ow. The "fth term o:X (x 3 V) '$jdX is due to a nonzero vorticity "eld in the
#ow. It originates from the nonlinear convection part of N}S equations, and thus represents
the contribution of the convection of vorticity in the #uid to the total force. The last term
o:R

B
(VB 'VB/2i) dz also originates from the convection part of N}S equations but is restricted

to #ow velocity at the wall. Its signi"cance was described earlier.
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Chang & Chern (1991b) obtained the following drag and lift coe$cient formulae for
steady #ow past a circular cylinder based on Quartapelle & Napolitano's (1983) method:

C
D
"PX

(x 3 V) '$(cos h/r) dX#

2

Re PR
B

(n 3 x) ' [$(cos h/r)#e1] ds, (30)

C
L
"PX

(x 3 V) '$(sin h/r) dX#

2

Re PR
B

(n 3 x) ' [$(sin h/r)#e2] ds, (31)

where e
1

and e
2

are the unit vectors parallel and perpendicular to the ambient #ow,
respectively, and Re is the Reynolds number (de"ned as Re"2ao;

=
/k). It can easily be

veri"ed that equations (30) and (31) are special cases of equation (29). In fact, after setting
<
B
"0, <

=
";

=
, j"a/zN and nondimensionalization with the radius a, density o and ;

=
,

the real and imaginary parts of equation (29) can be shown to reduce to equations (30) and
(31), respectively. However, equations (30) and (31) are valid only for the case of steady #ow
past a circular cylinder, whilst equation (29) is valid for an arbitrary body immersed in any
viscous or inviscid, steady or unsteady incompressible #ows.

It can be seen that equation (29) has the advantage of excluding the temporal derivative of
velocity and spatial derivative of vorticity inside the #ow "eld, except for V

B
and V

=
.

However, V
B

and V
=

are de"ned exactly at the boundary and at in"nity and their temporal
derivatives will not contribute to numerical di!erentiation errors. Thus, the force obtained
by using this formula has less numerical di!erentiation error (see Figure 3). It is well known
that the solution of velocity or vorticity "eld obtained by any numerical method inevitably
contains numerical error. If equation (1) is used to calculate the force acting on the body, the
magnifying coe$cient of the error is proportional to 1/(Dn), where Dn is the grid length in
the normal direction. For example, supposing that du(i, j) is the numerical error of vorticity
at the node (i, j), the numerical solution of vorticity can be written as
uJ (i, j)"u(i, j)#du(i, j ), where u(i, j ) is the exact value of vorticity at the node. If one-side
di!erence with two-order accuracy is used to denote the derivative of vorticity in the normal
direction ( j ) on the boundary, we have

LuJ (i, 1)

Ln
"

4u(i, 2)!3u(i, 1)!u(i, 3)

Dn
#

4du(i, 2)!3du(i, 1)!du(i, 3)

Dn
#O((Dn)2). (32)

It is clear that the error du may be magni"ed by 1/(Dn) times. Similarly, if equation (2) is
used, the magnifying coe$cient is proportional to 1/Dt, where Dt is the time step. The
advantage of the present formula is that the error in velocity and vorticity "elds obtained
from the numerical solution will not be magni"ed since the formula excludes the temporal
derivative of velocity and spatial derivative of vorticity.

To illustrate the advantage of the present formula, the drag exerted on a circular cylinder
started impulsively in a stationary #uid is calculated according to equations (1), (2) and (29)
using the same velocity and vorticity "elds obtained numerically by the vortex method
(Chew et al. 1995). The Reynolds number of the #ow considered here is 1000. For the
numerical computation of the #ow around a circular cylinder, it is necessary to choose
a suitable outer boundary, r

065
, where the zero vorticity condition as described in equation

(20) can be applied. Sa & Chang (1990) showed that accurate numerical results can be
obtained when the outer computational boundary is taken as r

065
"81)3a, where a is the

radius of cylinder, while Behr et al. (1991) showed that r
065

"50a is su$cient. The outer
boundary used here is located at r

065
"100a which is much larger than the values adopted

by Sa & Chang and Behr et al. The computational domain is divided into 256]512 cells in
h- and r-directions, respectively, and the time step Dt is taken as 0)001a/;

=
"0)2. The
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e!ects of spatial and temporal resolution on the convergence of numerical solution have
been studied in detail by Cheng et al. (1997) and the above mesh size and time step are found
to be optimal. It should be noted that the accuracy of the velocity and vorticity "elds has no
bearings on the validity of the present formula which is derived based purely on mathemat-
ical considerations.

In the present calculations, second-order di!erence is used to compute the normal
derivative of vorticity in equation (1) and the temporal derivative of velocity in equation (2).
The results of the drag coe$cient obtained using equation (1) are plotted in Figure 2 while
those using equation (3) are plotted in Figure 3. The high-frequency numerical instability
arising from the spatial derivative of vorticity can clearly be seen in Figure 2. Although
Figure 3(a) indicates that the mean drag curve obtained by equation (2) is close to that by
equation (29), the magni"ed view from t "89 to 100 in Figure 3(b) reveals that signi"cant
high-frequency instability arising from the temporal derivative of velocity is still present.
However, equation (29) is able to generate a smooth drag coe$cient curve, as evident in
Figure 3, since it does not su!er from the disadvantages of computing spatial and temporal
derivatives of vorticity and velocity "led.

In addition to the above, another important contribution of equation (29) is its ability to
provide an alternative method for calculating the added mass force when a 2-D body is
accelerated translationally in a #ow. For the elliptical cylinder with long axis 2a in the
x-direction and short axis 2b, we have m"(a#b)/2, m

1
"(a!b)/2 and ∀"nab. The

added mass force is obtained from equation (29@) as

F
!$$.

"

on
2 C(a2#b2)

d(<
B
!<

=
)

dt
!(a2!b2)

d(<M
B
!<M

=
)

dt D. (33)

For the cases of a circle, ellipse and plate, the added mass given by Sarpkaya & Isaacson
(1981) are, respectively, ona2, (onb2, ona2) and ona2. These are in agreement with what is
predicted by equation (33).

The transformation

z"
a

2 A
c

a
!e~*b#f#

(c/a)2

c/a!e~*b#fB
is able to map any Joukowsky aerofoil in the z-plane into a unit circle in the f-plane, where
c is the half-chord length, a and b are the two parameters controlling the thickness and
camber of an aerofoil. In this case, it can easily be shown that m"a/2, m

1
"(c/a)2/2 and

∀"n/4 (a2!c4/(2ac cos b!c2)). For any 2-D cylinder of arbitrary shape, m, m
1

and ∀ can
be determined through analytical or numerical methods, such as a Fourier transform
method, fast Fourier transform algorithm or some other numerical methods. Having
obtained the coe$cients m and m

1
as well as the area ∀, the added mass force acting on the

cylinder can easily be determined.
For a 2-D cylinder of arbitrary shape, the added mass force is obtained conventionally

from the potential function of the corresponding problem and kinetic energy law (Sarpkaya
& Isaacson 1981). Generally, to obtain this potential function, it is necessary to "nd each of
the coe$cients in equation (12). It can be observed from equation (29) that the present
added mass force terms are only related to the cross-sectional area of the body and the "rst
two coe$cients of the conformal transformation, m and m

1
. It is thus necessary neither to

determine all other coe$cients in the conformal transformation nor to "nd the potential
#ow solution. Therefore, in the case of a cylinder moving translationally in a #uid, the
method presented in equation (29) is simpler than the traditional method of calculating the
added mass force.
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6. CONCLUDING REMARKS

A general formula for calculating the force acting on an arbitrary two-dimensional rigid
body in a viscous/inviscid or steady/unsteady incompressible #ow has been obtained. This
formula consists of three parts: the added mass force (and/or inertial force) in inviscid #ow,
the force caused by the deformation of #uid due to viscosity and the force caused by the
convection of #uid with nonzero circulation. It describes separately the e!ect of these
contributing factors to the force and enables them to be studied numerically in order to
understand how they contribute to the total unsteady force under di!erent #ow conditions.
It will be used to investigate oscillatory #ow past a circular cylinder at di!erent Keule-
gan}Carpenter numbers and frequency parameters, and numerically derive the drag and
inertia coe$cients commonly used in the Morison equation. These will be presented later in
a separate paper.

As the formula excludes the temporal derivative of velocity and the spatial derivative of
vorticity in the #ow "eld, the numerical errors arising from the numerical solution of
velocity or vorticity "eld will not be magni"ed, resulting in the calculated force to be
smoother and more accurate. The formula also presents an alternative method for deter-
mining the added mass force of an arbitrary two-dimensional body accelerating translation-
ally in a #uid. For bodies of simple shape, such as circles, ellipses and plates, the added
masses predicted using the present method are in agreement with those obtained by the
conventional method. For bodies of complex shape, the present method is simple since it
requires the calculation of only the "rst two coe$cients of the conformal transformation
and the cross-sectional area.
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